
M a k i n g t h e M o s t o f t h e P D M W o r k s A P I

1

Making the Most of the PDMWorks API
By

Jerry Winters

SolidWorks World 2007

Jerry Winters
jerryw@solidworksvba.com

(801) 508-0106

M a k i n g t h e M o s t o f t h e P D M W o r k s A P I

2

Introduction

We have 90 minutes to make the most of the SolidWorks API. Obviously, to make the most of anything, we want to ex-
ploit as much of it’s capabilities as possible. Here’s a bulleted list of the items we are going to work with in this class:

• Attach to PDMWorks
• Check In a Document
• SaveAs a Document from the Vault
• Query the PDMWorks Vault
• Export queried data to Excel
• Export queried data to Access
• Export queried data to SQL Server
• Export queried data to Oracle
• Set up Triggers
• Capture Trigger Information
• Store Trigger Information in a Database

If we have any time after doing the above, we will pull a few tricks out just for those in attendance.

Attach to PDMWorks

How difficult is it to Attach to PDMWorks? We are going to begin by ‘attaching’ to PDMWorks in Microsoft Excel.

Attaching in VBA

The first thing we need to do to attach to PDMWorks is add a Reference to the
“PDMWorks 1.0 Type Library”.

Once we select the correct Reference, we
can click the OK button.

M a k i n g t h e M o s t o f t h e P D M W o r k s A P I

3

1. Sub AttachToPDMWorks()
2. Dim myPDMConn As New PDMWConnection
3. myPDMConn.Login "pdmwadmin", "pdmwadmin", "localhost"
4. myPDMConn.Refresh
5. myPDMConn.Logout
6. End Sub

The code is fairly straight forward.

1. The Procedure is named “AttachToPDMWorks”.
2. Declare a variable as a New PDMWConnection.
3. Login to the Connection with a Username, Password, and Server Name.
4. Refresh the PDMWorks Vault.
5. Logout of the PDMWorks Vault.
6. End of Procedure.

Once we Login to a PDMWorks Vault, we can work with the Vault.

Here we see the Members of several important Objects in the
PDMWorks Object Library. We have already used Login, Re-
fresh, and Logout. Let’s see if we can perform a CheckIn.

M a k i n g t h e M o s t o f t h e P D M W o r k s A P I

4

CheckIn a Document

How difficult is it to Check a Document into PDMWorks with the API?

1. Sub CheckInPDMWorks()
2. Dim myPDMConn As New PDMWConnection
3. myPDMConn.Login "pdmwadmin", "pdmwadmin", "localhost"
4. myPDMConn.CheckIn "C:\data\SWWorld 2007\PDMWorks\FileForCheckIn.txt", _

 "sample", _
 "10001", _
 "Simple TXT File", _
 "Checking in via the API", _
 PDMWRevisionOptionType.Default, _
 "A-01", _
 "WIP", _
 True, _
 Nothing

5. myPDMConn.Refresh
6. myPDMConn.Logout
7. End Sub

When we look in SolidWorks Explorer
at the document we just checked in,
we can see how the parameters we
supplied are used and where they go.

The only thing that may cause a few
questions here is the Project. We
asked PDMWorks to check the
document into the “sample” project but
it looks like it was checked into the
“Sample Project” project. They are
actually the same thing. The actual
project is named “sample” and it’s
Description is “Sample Project”.

M a k i n g t h e M o s t o f t h e P D M W o r k s A P I

5

SaveAs a Document from the Vault

Attaching to PDMWorks is easy. Checking a document into the Vault is easy. Saving a file in the vault out to the system
should be easy too. Right?

1. Sub SaveAsADocument()
2. Dim myPDMConn As New PDMWConnection
3. myPDMConn.Login "pdmwadmin", "pdmwadmin", "localhost"
4. myPDMConn.Refresh
5. Dim myDoc As PDMWDocument
6. Set myDoc = myPDMConn.GetSpecificDocument("FileForCheckIn.txt")
7. myDoc.Save "C:\data\SWWorld 2007"
8. myPDMConn.Logout
9. End Sub

Lines 5, 6, and 7 are the lines of code that save the file to the local system. We are using the Save method of the
PDMWDocument object (See page 3 for the members of the PDMWDocument object).

Review Time.
We have accomplished quite a bit so far. We know how to attach to PDMWorks, CheckIn a Document,
and Save a Document in the Vault to our local system. And where have we done this? In Microsoft Ex-
cel’s VBA environment. The same code will work from with Access, SolidWorks, or any other program
that uses VBA. That’s pretty cool. But what does it take to create a stand-alone program (.exe file) that
does these things? Let’s take a look.

Using VB.NET Express Edition

Microsoft has provided a VB.NET development environment for us FREE OF CHARGE. Yes, you read that correctly. It
said “FREE OF CHARGE”. It can be downloaded at:

http://msdn.microsoft.com/vstudio/express/vb/

Let’s create a new VB.NET Express Project right now and see if we can get our code to work in this new environment.

After we begin a new Project, what’s the
first thing we need to do? Add a Reference.

Do a right-click on the Project, select Add
Reference, and select “PDMWorks 1.0 Type
Library” from the list.

M a k i n g t h e M o s t o f t h e P D M W o r k s A P I

6

Here’s the code in it’s entirety. Notice the “Imports” statement. This keeps us from typing “PDMWorks” in front of all
PDMWorks calls.

1. Imports PDMWorks
2. Public Class Form1
3. Private Sub Button1_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles Button1.Click
4. Dim myPDMConn As New PDMWConnection
5. myPDMConn.Login("pdmwadmin", "pdmwadmin", "localhost")
6. myPDMConn.Refresh()
7. myPDMConn.Logout()
8. End Sub

9. Private Sub Button2_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button2.Click

10. Dim myPDMConn As New PDMWConnection
11. myPDMConn.Login("pdmwadmin", "pdmwadmin", "localhost")
12. myPDMConn.CheckIn("C:\data\SWWorld 2007\PDMWorks\FileForCheckIn.txt", _

 "sample", _
 "10001", _
 "Simple TXT File", _
 "Checking in via the API", _
 PDMWRevisionOptionType.Default, _
 "A-01", _
 "WIP", _
 True, _
 Nothing)

13. myPDMConn.Refresh()
14. myPDMConn.Logout()
15. End Sub

16. Private Sub Button3_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button3.Click

17. Dim myPDMConn As New PDMWConnection
18. myPDMConn.Login("pdmwadmin", "pdmwadmin", "localhost")
19. myPDMConn.Refresh()
20. Dim myDoc As PDMWDocument
21. myDoc = myPDMConn.GetSpecificDocument("FileForCheckIn.txt")
22. myDoc.Save("C:\data\SWWorld 2007")
23. myPDMConn.Logout()
24. End Sub
25. End Class

A close look at the code will reveal very slight differences between VBA and VB.NET. The great thing is, though, that if
the Imports statement (Line 1) is in place, we can copy and paste the code from VBA directly into VB.NET and VB.NET
will take care of the formatting for us.

Now we have a program that can be compiled into an .exe file and
distributed. We also have access to the .NET Framework.

M a k i n g t h e M o s t o f t h e P D M W o r k s A P I

7

Query the PDMWorks Vault

We have seen an example of using the Save method of the PDMWDocument object. We retrieved this document by
using the “GetSpecificDocument” method. In the previous example, we knew the filename. That was an advantage for
us. But we won’t always know the filename. There are times when we need to ask the Vault to return a collection of
documents so we can sort through them one by one.

1. Sub QueryTheVaultA()
2. Dim myPDMConn As New PDMWConnection
3. Dim myPDMWSO As PDMWSearchOptions
4. Dim myPDMWSRs As PDMWSearchResults
5. Dim myPDMWSR As PDMWSearchResult
6. myPDMConn.Login "pdmwadmin", "pdmwadmin", "localhost"
7. myPDMConn.Refresh
8. Set myPDMWSO = myPDMConn.GetSearchOptionsObject
9. myPDMWSO.SearchCriteria.AddCriteria pdmwAnd, _

 pdmwDescription, _
 "", _
 pdmwContains, _
 "sea"

10. Set myPDMWSRs = myPDMConn.Search(myPDMWSO)
11. For Each myPDMWSR In myPDMWSRs
12. If Not myPDMWSR.Document Is Nothing Then
13. MsgBox myPDMWSR.Description & vbCr & myPDMWSR.Name
14. End If
15. Next
16. myPDMConn.Logout
17. End Sub

We can see the results of the code shown above. Let’s talk a little about the process of querying the PDMWorks Vault.

A. Obtain the SearchOptionsObject from the PDMWorks Connection. (See Line 8.)
B. Add criteria. Multiple Criteria can be added. This example shows only one. (See Line 9.)
C. Search the Vault using the SearchOptionsObject. (See Line 10.)
D. Traverse the PDMWSearchResults using a For Each statement. (See Lines 11 thru 15.)

In the above example, we are looking for the letters “sea” in the Description property.

Notice the PDMWPropertyType parameter above. The PDMWPropertyType
enumeration is shown here. If we use “pdmwUserDefinedProperty” then we must
supply the propertyName parameter. Otherwise we can enter an empty string (“”) for
that parameter as we have done in the example above.

Let’s try a few more queries.

M a k i n g t h e M o s t o f t h e P D M W o r k s A P I

8

1. Sub QueryTheVaultB()
2. Dim myPDMConn As New PDMWConnection
3. Dim myPDMWSRs As PDMWSearchResults
4. Dim myPDMWSO As PDMWSearchOptions
5. Dim myPDMWSR As PDMWSearchResult
6. myPDMConn.Login "pdmwadmin", "pdmwadmin", "localhost"
7. myPDMConn.Refresh
8. Set myPDMWSO = myPDMConn.GetSearchOptionsObject
9. myPDMWSO.SearchCriteria.AddCriteria pdmwAnd, _

 pdmwDocumentName, _
 "", _
 pdmwContains, _
 ".sldprt"

10. myPDMWSO.SearchCriteria.AddCriteria pdmwOr, _
 pdmwDocumentName, _
 "", _
 pdmwContains, _
 ".prt"

11. Set myPDMWSRs = myPDMConn.Search(myPDMWSO)
12. For Each myPDMWSR In myPDMWSRs
13. If Not myPDMWSR.Document Is Nothing Then
14. Debug.Print myPDMWSR.Name
15. End If
16. Next
17. myPDMConn.Logout
18. End Sub

Now we are looking for Documents with “.sldprt” OR “.prt”
in file name. Printing the results to the Immediate window
(Debug.Print prints to the Immediate window) is a start.
But if we are going to take the time to query PDMWorks,
let’s put the data in a place where we can make some use
of it.

M a k i n g t h e M o s t o f t h e P D M W o r k s A P I

9

Export Queried Data to Excel

Microsoft Excel. Workbooks, Worksheets, Rows, Columns,
Cells. Everything we need to store information. Right? Let’s
see if we can store PDMWorks Vault information in an Excel
Worksheet.

The results of “QueryTheVaultC” are shown on the next
page. But don’t turn the page. Take a look at the code and
see if you can tell what the results will look like.

1. Sub QueryTheVaultC()
2. Dim myPDMConn As New PDMWConnection
3. Dim myPDMWSO As PDMWSearchOptions
4. Dim myPDMWSRs As PDMWSearchResults
5. Dim myPDMWSR As PDMWSearchResult
6. Dim CurRow As Long
7. myPDMConn.Login "pdmwadmin", "pdmwadmin", "localhost"
8. myPDMConn.Refresh
9. Set myPDMWSO = myPDMConn.GetSearchOptionsObject
10. myPDMWSO.SearchCriteria.AddCriteria pdmwAnd, _

 pdmwDocumentName, _
 "", _
 pdmwContains, _
 ".sldprt"

11. myPDMWSO.SearchCriteria.AddCriteria pdmwOr, _
 pdmwDocumentName, _
 "", _
 pdmwContains, _
 ".prt"

12. Set myPDMWSRs = myPDMConn.Search(myPDMWSO)
13. CurRow = 2
14. Sheet1.Cells(1, "A") = "Project"
15. Sheet1.Cells(1, "B") = "Name"
16. Sheet1.Cells(1, "C") = "Revision"
17. Sheet1.Cells(1, "D") = "Owner"
18. Sheet1.Cells(1, "E") = "Modified"
19. Sheet1.Cells(1, "F") = "Description"
20. Sheet1.Cells(1, "G") = "Number"
21. For Each myPDMWSR In myPDMWSRs
22. If Not myPDMWSR.Document Is Nothing Then
23. If myPDMWSR.project = "Sea Scooter" Then
24. Sheet1.Cells(CurRow, "A") = myPDMWSR.Document.project
25. Sheet1.Cells(CurRow, "B") = myPDMWSR.Document.Name
26. Sheet1.Cells(CurRow, "C") = myPDMWSR.Document.Revision
27. Sheet1.Cells(CurRow, "D") = myPDMWSR.Document.Owner
28. Sheet1.Cells(CurRow, "E") = myPDMWSR.Document.DateModified
29. Sheet1.Cells(CurRow, "F") = myPDMWSR.Document.Description
30. Sheet1.Cells(CurRow, "G") = myPDMWSR.Document.Number
31. CurRow = CurRow + 1
32. End If
33. End If
34. Next
35. myPDMConn.Logout
36. End Sub

M a k i n g t h e M o s t o f t h e P D M W o r k s A P I

10

Now, that’s a thing of beauty. Look at all of that great data. It looks like “pdmwadmin” has been busy. Let’s try another
query. This time we will be looking for Assembly files.

M a k i n g t h e M o s t o f t h e P D M W o r k s A P I

11

1. Sub QueryTheVaultD()
2. Dim myPDMConn As New PDMWConnection
3. Dim myPDMWSO As PDMWSearchOptions
4. Dim myPDMWSRs As PDMWSearchResults
5. Dim myPDMWSR As PDMWSearchResult
6. Dim CurRow As Long
7. myPDMConn.Login "pdmwadmin", "pdmwadmin", "localhost"
8. myPDMConn.Refresh
9. Set myPDMWSO = myPDMConn.GetSearchOptionsObject
10. myPDMWSO.SearchCriteria.AddCriteria pdmwAnd, _

 pdmwDocumentName, _
 "", _
 pdmwContains, _
 ".sldasm"

11. myPDMWSO.SearchCriteria.AddCriteria pdmwOr, _
 pdmwDocumentName, _
 "", _
 pdmwContains, _
 ".asm"

12. Set myPDMWSRs = myPDMConn.Search(myPDMWSO)
13. CurRow = 2
14. Sheet2.Cells(1, "A") = "Project"
15. Sheet2.Cells(1, "B") = "Name"
16. Sheet2.Cells(1, "C") = "Revision"
17. Sheet2.Cells(1, "D") = "Owner"
18. Sheet2.Cells(1, "E") = "Modified"
19. Sheet2.Cells(1, "F") = "Description"
20. Sheet2.Cells(1, "G") = "Number"
21. For Each myPDMWSR In myPDMWSRs
22. If Not myPDMWSR.Document Is Nothing Then
23. If myPDMWSR.project = "Sea Scooter" Then
24. Sheet2.Cells(CurRow, "A") = myPDMWSR.Document.project
25. Sheet2.Cells(CurRow, "B") = myPDMWSR.Document.Name
26. Sheet2.Cells(CurRow, "C") = myPDMWSR.Document.Revision
27. Sheet2.Cells(CurRow, "D") = myPDMWSR.Document.Owner
28. Sheet2.Cells(CurRow, "E") = myPDMWSR.Document.DateModified
29. Sheet2.Cells(CurRow, "F") = myPDMWSR.Document.Description
30. Sheet2.Cells(CurRow, "G") = myPDMWSR.Document.Number
31. CurRow = CurRow + 1
32. End If
33. End If
34. Next
35. myPDMConn.Logout
36. End Sub

OK. That was really hard. Everything that had said “Sheet1” now says “Sheet2”. And we are looking for “.sldasm” and
“.asm”. It’s just so difficult. Or not.

What would we do if we wanted to query for Drawing files? Instead of “.sldasm”, we would use ______________.
Rather than “.asm” we would use _______. And if we wanted to place the Drawing data on Sheet 3, we would change
“Sheet2” to _________.

M a k i n g t h e M o s t o f t h e P D M W o r k s A P I

12

Export Queried Data to Access

We can see how easy it is to ‘export’ data from PDMWorks into Excel. Is this because the code is running in Excel?
Surely, saving data to an Access database must be difficult.

Above, we see the structure for an Access Database Table named “Documents”. Take a look at the File Names. They
look a lot like the row headings in the Excel extraction we just worked with. Don’t they?

The database we are going to use has a path of:

C:\data\SWWorld 2007\PDMWorks\PDMWorks Data.mdb

We are going to use a UDL File to help us work with this database. The path of the UDL file is:

C:\data\SWWorld 2007\PDMWorks\PDMWorksDatabase.udl

To create a UDL file, follow these steps:

A. Right-click in a Windows Explorer Folder and select New > Text Document.
B. Windows will create a new .txt file and will wait for you to rename it. Change the name to “PDMWorksDatabase.udl”.
C. Windows will ask if you are sure the file extension should be changed. Click “Yes”.
D. Double-click on the UDL file to change it’s settings.

M a k i n g t h e M o s t o f t h e P D M W o r k s A P I

13

Here we can see that we are using the “Microsoft Jet 4.0 OLE EB Provider”. And the path to the database is selected in
the Connection Tab.

If we click the “Test Connection” button, we should get a favorable result.

We will experience why this UDL file is so important in a little while. But for now, just
take a look at the OLE DB Providers list. Notice the Oracle and SQL Server
providers? I have a feeling we are going to make use of these Providers.

OK. We have a Database. We have a UDL file. It’s
time to get back into our programming environment.

The next thing we need to do is add a Reference to the
“Microsoft ActiveX Data Objects #.# Library”. As we
see here, 2.8 is the highest version on this computer so
we will use it. It is alright if the highest version on your
computer is different.

M a k i n g t h e M o s t o f t h e P D M W o r k s A P I

14

1. Sub QueryTheVaultE()
2. Dim myPDMConn As New PDMWConnection
3. Dim myPDMWSO As PDMWSearchOptions
4. Dim myPDMWSRs As PDMWSearchResults
5. Dim myPDMWSR As PDMWSearchResult
6. Dim myDB As New ADODB.Connection
7. Dim myRS As New ADODB.Recordset
8. myPDMConn.Login "pdmwadmin", "pdmwadmin", "localhost"
9. myPDMConn.Refresh
10. Set myPDMWSO = myPDMConn.GetSearchOptionsObject
11. myPDMWSO.SearchCriteria.AddCriteria pdmwAnd, _

 pdmwDocumentName, _
 "", _
 pdmwContains, _
 ".sldprt"

12. myPDMWSO.SearchCriteria.AddCriteria pdmwOr, _
 pdmwDocumentName, _
 "", _
 pdmwContains, _
 ".sldasm"

13. Set myPDMWSRs = myPDMConn.Search(myPDMWSO)
14. myDB.Open "File name=C:\data\SWWorld 2007\PDMWorks\PDMWorksDatabase.udl"
15. myRS.Open "Select * from Documents Where UniqueID = 0", myDB, _

 adOpenDynamic, adLockOptimistic
16. For Each myPDMWSR In myPDMWSRs
17. If Not myPDMWSR.Document Is Nothing Then
18. If myPDMWSR.project = "Sea Scooter" Then
19. myRS.AddNew
20. myRS("Project").Value = myPDMWSR.Document.project
21. myRS("FileName").Value = myPDMWSR.Document.Name
22. myRS("Revision").Value = myPDMWSR.Document.Revision
23. myRS("Owner").Value = myPDMWSR.Document.Owner
24. myRS("Modified").Value = myPDMWSR.Document.DateModified
25. myRS("Description").Value = myPDMWSR.Document.Description
26. myRS("FileNumber").Value = myPDMWSR.Document.Number
27. myRS.Update
28. End If
29. End If
30. Next
31. myRS.Close
32. myDB.Close
33. myPDMConn.Logout
34. End Sub

Much of the code is the same as when we were writing to Microsoft Excel. Notice Line 14. This is where we open the
database using the UDL file. We open the “Documents” table on Line 15. Lines 19 thru 27 are used to add new records
to the database.

M a k i n g t h e M o s t o f t h e P D M W o r k s A P I

15

How’s this data looking? Not bad. Not bad at all.

Now, Microsoft Access is a great database. It only has problems when people attempt to use it as a major software
development environment. You will notice that we are using it to store data, not to run code. The code we are running is
in Excel. The code would run equally well in SolidWorks or VB.NET. But let’s imagine that people begin to get worried
that having data in Access is problematic. It is time to scale up to SQL Server.

So, the big boss says, “Jones, I want you to scale up your data extraction program to SQL Server. What do you need?”

STOP!!!! Think before you answer. The correct answer is:

“Scaling up to SQL Server is going to take a substantial effort. But I really think if I could get away to the corporate
condo in Hawaii for about 3 weeks, I could pull it off.”

The big boss says, “3 weeks? That’s all? I thought it would take longer.”

You say, “I will work day and night until it is finished.”

Export Queried Data to SQL Server

SQL Server is an expensive, enterprise-wide, massive, huge, database. Remember, we have 3 weeks to complete the
migration from Access to SQL Server.

M a k i n g t h e M o s t o f t h e P D M W o r k s A P I

16

You arrive at the corporate condo in Hawaii on Monday morning. It is 8:00 AM.

Task 1: Create a SQL Server Database that mimics the Access Database. Time to complete: 6 minutes.

Task 2: Double-click on the UDL file. Time to complete: 1 minute.
Task 3: Change the Provider and Connection Tabs as shown below. Time to complete: 2 minutes.

M a k i n g t h e M o s t o f t h e P D M W o r k s A P I

17

Task 4: Run the Program. Time to complete: 1 minute.

The time is now 8:10 AM on Monday morning. What are you going to do until 5:00 PM today? What about tomorrow?
What about for the next 2 weeks and 6 days? I have great confidence that you will think of something to do.

Tuesday.
Wednesday.
Thursday.
Friday.
Saturday.
Sunday.
Monday.
Tuesday.
Wednesday.
Thursday.
Friday.
Saturday.
Sunday.
Monday.
Tuesday.
Wednesday.
Thursday.
Friday.
Saturday.
Sunday.

It’s time to go home. You’re exhausted. Not because of the sleepless nights due to this massive programming effort but
because of the fun you have had in Hawaii.

ANSWER THIS QUESTION:

How much code did we re-write? ____________________________

M a k i n g t h e M o s t o f t h e P D M W o r k s A P I

18

Export Queried Data to Oracle

Your boss is so impressed with the hard work you have done that you are given 2 weeks of paid vacation at the
corporate condo in Hawaii. You graciously turn down the offer and are given a substantial raise instead. And it’s a good
thing that you are in the office because a new CIO is hired and the new CIO loves Oracle and despises everything else.

You receive a phone call asking you to attend the emergency Board of Directors meeting. The new CIO demands that
our SQL Server tracking system be moved into Oracle. Fortunately, he has just left a company where a similar migration
took 6 months to complete. We want to impress him, though. Right? So, in front of the entire Board of Directors, we
suggest that we may be able to complete the task in 4 months of uninterrupted time. But where could we go? Aaah.
French. You don’t speak French. If you could only be persuaded to spend 4 months in the Paris, France Condo. You
would be less likely to be interrupted because you don’t even speak the language. And if your company could leave you
alone, that would be good too. You will send bi-monthly updates to the CIO directly.

Off you go to France. You’re in the condo at 8:00 AM.

Task 1: Create an Oracle Database that mimics the SQL Server Database. Time to complete: 6 minutes.
Task 2: Double-click on the UDL file. Time to complete: 1 minute.
Task 3: Change the Provider and Connection Tabs as shown below. Time to complete: 2 minutes.

Username: System
Password: pdmwadmin

Task 4: Run the Program. Time to complete: 1 minute.

M a k i n g t h e M o s t o f t h e P D M W o r k s A P I

19

A Table named Documents has a Primary Key Constraint on the UniqueID Field. A Trigger inserts the next DocumentID
Sequence value in the UniqueID field in the Documents table. This is how a ‘Autonumber’ field is replicated in Oracle.

M a k i n g t h e M o s t o f t h e P D M W o r k s A P I

20

Time to review. It’s now Monday at 8:10 AM. The migration to Oracle has been completed. You are in Paris, France for
4 months. What are you going to do for the next 3 months 29 days?

I like to joke about taking advantage of employers who are unaware about how easy many things are to accomplish. But
the reason we can joke about them is because many people in the software development world would take 4 months to
perform an Oracle migration as we have just described. If we are smart, if we plan in advance, if we think before we
begin writing programs, we will write programs that are database platform dependent.

By the way, here’s the data in Oracle.

FREE, FREE, FREE

Now, we have discussed the availability of VB.NET Express Edition. It’s free. Microsoft has an Express Edition for SQL
Server. It can be downloaded at:

http://msdn.microsoft.com/vstudio/express/sql/register/default.aspx

And what about Oracle? You can download the free edition of Oracle at:

http://www.oracle.com/technology/software/products/database/xe/index.html

And the source code for this class? It’s yours for only $995. And we will throw in a free set of steak knives. What a
bargain.

M a k i n g t h e M o s t o f t h e P D M W o r k s A P I

21

Set up Triggers

Triggers. I love triggers. We have learned how to query the Vault. Right? We can query the vault every hour on the
hour in order to see what has changed. Or we can use Triggers and have the Vault tell us what has changed.

Step 1: The first step to making use of PDMWorks Triggers is to install MSMQ on the Vault Server.

Notice the Message Queuing item
in the Add/Remove Windows
Components dialog.

M a k i n g t h e M o s t o f t h e P D M W o r k s A P I

22

Step 2: The next step is to make sure that Triggers are set up in the PDMWorks Vault Admin.

M a k i n g t h e M o s t o f t h e P D M W o r k s A P I

23

Step 3: Create a new MSMQ Queue named “pdmworks”. This is found in the Computer Management which is under
the Administrative Tools window.

M a k i n g t h e M o s t o f t h e P D M W o r k s A P I

24

Step 4: Create a new Rule

Now we are going to create a New Rule.

We give the rule a Name and Description.

We are not going to apply any Rules, so just click the Next
button.

M a k i n g t h e M o s t o f t h e P D M W o r k s A P I

25

The last thing we do is specify what to do when the Rule is
invoked. In this example, we are starting Notepad.

Before clicking the Finish button, click the Parameters button.
This is where we specify what information we want sent to the
application entered (Notepad in this example).

We are adding the Message Label and the Message Body. Both are
requested in String format.

Step 5: Add a new Trigger to the “pdmworks” Queue.

M a k i n g t h e M o s t o f t h e P D M W o r k s A P I

26

Give the Trigger a Name.

Select a Rule to execute when the Trigger is
activated.

Click the Finish Button.

M a k i n g t h e M o s t o f t h e P D M W o r k s A P I

27

Step 6: Test the Trigger by checking a document into the Vault.

Remember, we are using Notepad to test our Trigger right
now. When a document is checked into the Vault, we see
Notepad and this message. Why would this happen?
Because Triggers send command-line information along with
the path to the .exe file.

This does confirm that the trigger is working correctly.

We are going to modify the Rule that had been
pointing to Notepad. Notepad, after all, doesn’t help
us much.

This is a program written in VB.NET. After setting
this up, we will try checking in another document.

M a k i n g t h e M o s t o f t h e P D M W o r k s A P I

28

Here we have the PDMWorks Trigger Testing Form showing us
the information that is being ‘transmitted’. We are shown two
views of the data. The first is the raw data as it comes across in
the command line. The second is a tree view of the data.

Notice that the first thing shown is “checkin”. This is why Notepad
was looking for a file named “checkin” when it was being
launched by the trigger.

Can we see what has happened here? We can see that a new
Project has been created. It’s name is “SWWorld 2007 Test”. It
was created by the user “pdmwadmin”.

The PDMWorks Trigger Testing program is a VB.NET Express Edition Program. The code is shown on the following
page.

M a k i n g t h e M o s t o f t h e P D M W o r k s A P I

29

1. Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

2. 'Get the Body of the Message
3. Dim XSplit() As String
4. Dim ReJoin As String
5. Dim tvParent1 As TreeNode
6. Dim tvParent2 As TreeNode
7. Dim tvParent3 As TreeNode
8. Dim tvParent4 As TreeNode
9. Dim tvChild1 As TreeNode
10. Dim myXMLItemAtts As Xml.XmlAttributeCollection
11. Dim myXMLItemAtt As Xml.XmlAttribute
12. TextBox1.Text = Command()
13. XSplit = Split(Command, " ")
14. XSplit(0) = ""
15. ReJoin = Join(XSplit, " ")
16. ReJoin = Mid(ReJoin, 3, Len(ReJoin) - 3)
17. Dim myDom As New Xml.XmlDocument
18. myDom.InnerXml = ReJoin

19. Dim myXML As Xml.XmlNode
20. Dim myPDMWxml As Xml.XmlNode
21. Dim myHeader As Xml.XmlNode
22. Dim myBody As Xml.XmlNode
23. Dim myBodyItem As Xml.XmlNode
24. myXML = myDom.FirstChild
25. tvParent1 = tv1.Nodes.Add(myXML.Name)

26. myPDMWxml = myXML.NextSibling
27. tvParent2 = tvParent1.Nodes.Add(myPDMWxml.Name)

28. myHeader = myPDMWxml.ChildNodes(0)
29. tvParent3 = tvParent2.Nodes.Add(myHeader.Name)
30. myXMLItemAtts = myHeader.Attributes
31. For Each myXMLItemAtt In myXMLItemAtts
32. tvParent3.Nodes.Add(myHeader.Name & "." & myXMLItemAtt.Name, _

 myXMLItemAtt.Name & " = " & myXMLItemAtt.Value)
33. Next

34. myBody = myPDMWxml.ChildNodes(1)
35. tvParent4 = tvParent2.Nodes.Add(myBody.Name)
36. For Each myBodyItem In myBody.ChildNodes
37. tvChild1 = tvParent4.Nodes.Add(myBodyItem.Name)
38. myXMLItemAtts = myBodyItem.Attributes
39. For Each myXMLItemAtt In myXMLItemAtts
40. tvChild1.Nodes.Add(myBodyItem.Name & "." & myXMLItemAtt.Name, _

 myXMLItemAtt.Name & " = " & myXMLItemAtt.Value)
41. Next
42. Next
43. End Sub

Store Trigger Information in a Database

So, the PDMWorks Trigger Testing program shows us the information we are given any time a trigger is triggered. Let’s
see if we can do something useful with the data.

M a k i n g t h e M o s t o f t h e P D M W o r k s A P I

30

1. Sub QueryTheVaultUpdateTheDatabase(ByVal Filename As String)
2. Dim myPDMConn As New PDMWConnection
3. Dim myPDMWDoc As PDMWDocument
4. Dim myDB As New ADODB.Connection
5. Dim myRS As New ADODB.Recordset

6. myPDMConn.Login("pdmwadmin", "pdmwadmin", "localhost")
7. myPDMWDoc = myPDMConn.GetSpecificDocument(Filename)

8. myDB.Open("File name=C:\data\SWWorld 2007\PDMWorks\PDMWorksDatabase.udl")
9. myRS.Open("Select * from Documents ", myDB, _

 ADODB.CursorTypeEnum.adOpenDynamic, ADODB.LockTypeEnum.adLockOptimistic)

10. If Not myPDMWDoc Is Nothing Then
11. myRS.AddNew()
12. myRS("Project").Value = myPDMWDoc.project
13. myRS("FileName").Value = myPDMWDoc.Name
14. myRS("Revision").Value = myPDMWDoc.Revision
15. myRS("Owner").Value = myPDMWDoc.Owner
16. myRS("Modified").Value = myPDMWDoc.DateModified
17. myRS("Description").Value = myPDMWDoc.Description
18. myRS("FileNumber").Value = myPDMWDoc.Number
19. myRS.Update()
20. End If
21. myRS.Close()
22. myDB.Close()
23. myPDMConn.Logout()
24. End Sub

Now, before anyone yells at me, I will say it. This is not necessarily the most efficient way to run this code but it does
demonstrate the goal. This procedure accepts a Filename parameter. We query the Vault for the provided Filename
and write it’s information to the database.

Right now it’s writing to Oracle. What do we do if we want the data written to SQL Server? Do we change the code and
re-compile? No. We change the UDL File.

Let’s take a look at the code that calls “QueryTheVaultUpdateTheDatabase”. It should look a lot like the code on the
previous page.

M a k i n g t h e M o s t o f t h e P D M W o r k s A P I

31

1. Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

2. 'Get the Body of the Message
3. Dim XSplit() As String
4. Dim ReJoin As String
5. Dim tvParent1 As TreeNode
6. Dim tvParent2 As TreeNode
7. Dim tvParent3 As TreeNode
8. Dim tvParent4 As TreeNode
9. Dim tvChild1 As TreeNode
10. Dim myXMLItemAtts As Xml.XmlAttributeCollection
11. Dim myXMLItemAtt As Xml.XmlAttribute
12. TextBox1.Text = Command()
13. XSplit = Split(Command, " ")
14. XSplit(0) = ""
15. ReJoin = Join(XSplit, " ")
16. ReJoin = Mid(ReJoin, 3, Len(ReJoin) - 3)
17. Dim myDom As New Xml.XmlDocument
18. myDom.InnerXml = ReJoin
19. Dim TriggerType As String = ""
20. Dim TriggerFile As String = ""

21. Dim myXML As Xml.XmlNode
22. Dim myPDMWxml As Xml.XmlNode
23. Dim myHeader As Xml.XmlNode
24. Dim myBody As Xml.XmlNode
25. Dim myBodyItem As Xml.XmlNode
26. myXML = myDom.FirstChild
27. tvParent1 = tv1.Nodes.Add(myXML.Name)

28. myPDMWxml = myXML.NextSibling
29. tvParent2 = tvParent1.Nodes.Add(myPDMWxml.Name)

30. myHeader = myPDMWxml.ChildNodes(0)
31. tvParent3 = tvParent2.Nodes.Add(myHeader.Name)
32. myXMLItemAtts = myHeader.Attributes
33. For Each myXMLItemAtt In myXMLItemAtts
34. tvParent3.Nodes.Add(myHeader.Name & "." & myXMLItemAtt.Name, _

 myXMLItemAtt.Name & " = " & myXMLItemAtt.Value)
35. If myXMLItemAtt.Name = "type" Then
36. TriggerType = myXMLItemAtt.Value
37. End If
38. Next

39. myBody = myPDMWxml.ChildNodes(1)
40. tvParent4 = tvParent2.Nodes.Add(myBody.Name)
41. For Each myBodyItem In myBody.ChildNodes
42. tvChild1 = tvParent4.Nodes.Add(myBodyItem.Name)
43. myXMLItemAtts = myBodyItem.Attributes
44. For Each myXMLItemAtt In myXMLItemAtts
45. tvChild1.Nodes.Add(myBodyItem.Name & "." & myXMLItemAtt.Name, _

 myXMLItemAtt.Name & " = " & myXMLItemAtt.Value)
46. If myXMLItemAtt.Name = "document" Then
47. TriggerFile = myXMLItemAtt.Value
48. End If
49. Next
50. Next
51. Select Case TriggerType
52. Case ""
53. Case "checkin"
54. QueryTheVaultUpdateTheDatabase(TriggerFile)
55. End Select
56. End Sub

The new lines of code are shown in bold. The goal is to capture what type of operation has triggered the trigger and to
act accordingly in lines 51 through 55.

M a k i n g t h e M o s t o f t h e P D M W o r k s A P I

32

Our PDMWorks Trigger Testing application is working well. It captures and returns information for each of the
PDMWorks Triggers available (See Page 22).

Let’s look at two additional things before we wrap things up.

When we initially set up our Rule, we did not add any
conditions. If we select “Message label contains” and enter
“checkin” and add this condition, the Rule Action will only fire
when the condition is met.

The other thing we want to look at is the “Interact with
desktop” setting in the Rule Action tab. This has been
selected so far. Let’s see what happens if we uncheck it.

M a k i n g t h e M o s t o f t h e P D M W o r k s A P I

33

As we can see here, document information continues to be added to the database but the User Interface (the Form) is
not shown.

Even though the User Interface is not being
shown, the Application is still running. And not
just one Application but an instance for each
document that is checked into the Vault.

M a k i n g t h e M o s t o f t h e P D M W o r k s A P I

34

A Final Review

When we started about 90 minutes ago, we had a list of goals.

• Attach to PDMWorks
• Check In a Document
• SaveAs a Document from the Vault
• Query the PDMWorks Vault
• Export queried data to Excel
• Export queried data to Access
• Export queried data to SQL Server
• Export queried data to Oracle
• Set up Triggers
• Capture Trigger Information
• Store Trigger Information in a Database

You should have everything you need to build a framework for your own specific needs. PDMWorks is great and
SolidWorks has given us the ability to capitalize on the data that is in the Vault as well as the interaction each user is
having with PDMWorks.

I hope your SolidWorks World experience is a good one and I look forward to associating with you in the future.

Jerry Winters

jerryw@solidworksvba.com
(801) 508-0106

